

Oregon Basin Outlook Report

June 1, 2012

Summer maintenance at Starr Ridge SNOTEL site, May 2012

As snow surveyors, we are often asked, "What do you do in the summer after the snow melts?" This year, we were able to capitalize on the early snowmelt to start the summer maintenance season a little sooner than normal. During the snow-free period, we will visit all 149 Oregon and Washington SNOTEL sites to drain the precipitation that has collected in the tall storage gages (center of photo above). These precipitation gages are designed to store rain, snow, sleet and hail for the entire year. Other types of regular site maintenance activities include: calibrating sensors, replacing malfunctioning sensors, repairing any structures or equipment that was damaged during the winter by heavy snow load, wildlife or vandalism. We are usually still doing SNOTEL site maintenance in October when the first snowflakes of winter begin to fall.

Contents

General Outlook	1
Owyhee and Malheur Basins	3
Burnt, Powder, Grande Ronde, and Imnaha Basins	5
Umatilla, Walla Walla, Willow Rock, and Lower John Day Basins	8
Upper John Day Basin	10
Upper Deschutes and Crooked Basins	12
Hood, Mile Creeks, and Lower Deschutes Basins	15
Lower Columbia Basin	17
Willamette Basin	19
Rogue and Umpqua Basins	23
Klamath Basin	26
Lake County and Goose Lake	28
Harney Basin	30
Recession Flow Forecasts	32
Summary of Snow Course Data	34
Basin Outlook Reports: How Forecasts Are Made	36
Interpreting Water Supply Forecasts	37

General Outlook

June 1, 2012

SUMMARY

Most of Oregon experienced dry and warm conditions during the month of May. The warm, sunny weather caused some dirt roads and trails in the lower elevations to become dusty already. The trend this winter has been for the end of each month to bring a surprise. Memorial Day weekend brought a drop in temperatures and a return of a wet spell. Higher elevations accumulated up to a foot of new snow. This burst of moisture allowed the Cascade Mountains to receive more precipitation than the usual allotment for May. Northwestern Oregon is hanging on to ample snow in the high country and will continue to supply the Willamette, Deschutes and Hood Rivers with plenty of water this summer. Elsewhere, most of the snow has run out of the hills and most rivers have experienced their snowmelt-driven peak flows for the season.

Summer streamflow forecasts range widely across Oregon. While rivers across western Oregon are forecast to have near normal to above normal flows, water supply conditions for the rest of the state are expected to be below average this summer. Adequate reservoir storage across most of Oregon will likely help to buffer the impacts of low water supply conditions, especially in the eastern basins of the state.

SNOWPACK

Most of May was warm and dry, which resulted in typical spring snowmelt conditions across Oregon. Then, an unusually cold, Memorial Day storm front moved through, dropping up to a foot of new snow in the higher elevations. Many mid-elevation SNOTEL sites across the state recorded measurable snow during this event, including several that had already melted out.

As of June 1, the snowpack at most of the Oregon SNOTEL sites had melted out. However, 10 of the 80 SNOTEL sites in the state were still recording snow. For comparison, last year at this time, 40 SNOTEL sites were recording snow. Last year on June 1, the mid-elevation sites had as much as four times the snow water content as this year, while the high-elevation sites had nearly twice the amount of snow water content as this year.

PRECIPITATION

The northwest quadrant of the state was the only region of Oregon that received a normal amount of precipitation during May. The rest of the state was quite dry for the month, despite the storm at the end of May that brought significant rain and a dusting of snow to most of Oregon. The Owyhee and Malheur basins were the driest in Oregon, receiving only 59 percent of normal May precipitation.

The spring of 2012 was the wettest spring on record for Portland, according to the 71-year National Weather Service record at the Portland International Airport. This weather station received a record-breaking 14.53 inches of rainfall during March through May. In addition, a rare thunderstorm on May 26 brought a deluge to the metro area that broke the all-time 1-hour, 2-hour, and 3-hour rainfall records for May. In fact, the 1.02 inches of rain recorded in Portland during one hour of the May 26 thunderstorm was only 0.01 inches away from the all-time one-hour record rainfall that was measured back in September 2010. The wettest Oregon SNOTEL site this spring was North Fork SNOTEL. Located in the Bull Run watershed near Mt. Hood, the site received 52.9 inches of precipitation during March through May, which is 157 percent of average for this time period.

Since the beginning of the water year, precipitation totals have ranged from 82 percent of average in the Lake County and Harney basins to 111 percent of average in the Hood, Mile Creeks and Lower Deschutes basins.

RESERVOIRS

As of June 1, the majority of the reservoirs in Oregon are holding near normal or slightly above normal volumes of water for this time of year. For those areas that have experienced low snowpacks and dry conditions this winter and spring, such as the southeastern Oregon basins, adequate reservoir storage should help compensate for the well below average streamflows expected this summer. The Klamath basin reservoirs are an exception to this trend. The storage levels at all three Klamath reservoirs decreased more than normal during May, and are currently well below normal.

The June 1 storage at 26 major Oregon reservoirs analyzed in this publication was 92 percent of average. As of June 1, water storage at these reservoirs totaled 2389 thousand acre-feet (kaf), representing 74 percent of usable capacity. Last year at this time, these same reservoirs stored 2734 kaf of water. It is critical to note that usage of the reservoir water started much later last spring, as it was unusually wet and cool.

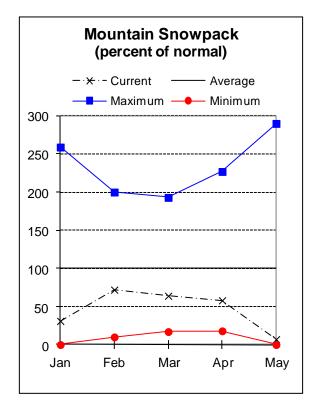
STREAMFLOW

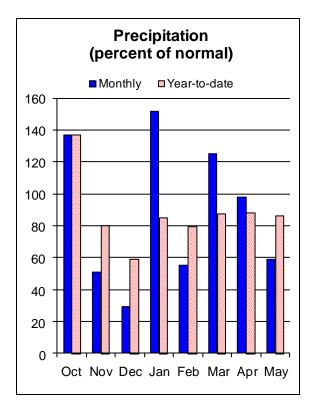
As of June 1, snow has melted from most Oregon SNOTEL sites and the snowmelt-induced streamflow peaks have already occurred for many streams. The higher elevations in the Cascade Mountains are still hanging on to snow that will likely keep most western and central Oregon rivers running at near normal levels during the summer.

Summer streamflow forecasts are highly variable across Oregon, as of June 1. Above average summer streamflows are expected in most of the western basins of Oregon, as well as the Deschutes River basin. Well below normal streamflows are forecast in the Owyhee, Malheur, Upper John Day, Lake County and Harney basins. All other Oregon basins have slightly below normal forecasts for streamflow volumes from June through September. A combination of a low snowpack this winter and a warm, dry spring in southeastern Oregon can be blamed for the very low summer flows that are expected in this region.

A summary of streamflow forecasts for Oregon follows:

STREAM	PERIOD	PERCENT OF AVERAGE
Owyhee Reservoir Inflow	Jun-Sep	41
Grande Ronde R at La Grande	Jun-Sep	74
Umatilla R at Pendleton	Jun-Sep	90
Deschutes R at Benham Falls	Jun-Sep	100
MF Willamette R bl NF	Jun-Sep	102
Rogue R at Raygold	Jun-Sep	81
Upper Klamath Lake Inflow	Jun-Sep	88
Silvies R nr Burns	Jun-Sep	37


Some of these forecasts assume that normal weather conditions will occur from now to the end of the forecast period. The forecasts in this bulletin are a result of coordinated activity between the Natural Resources Conservation Service and the National Weather Service as an effort to provide the best possible service to water users.


This report contains data furnished by the Oregon Department of Water Resources, U.S. Geological Survey, NOAA National Weather Service and other cooperators. This report will be updated monthly, January through June.

Owyhee and Malheur Basins

June 1, 2012

Water Supply Outlook

May was very dry in southeastern Oregon. Precipitation for the month was only 59 percent of average for the Owyhee and Malheur basins, which was the lowest in the state. Since October 1, the water year precipitation has been 86 percent of average.

Reservoir storage in the Owyhee and Malheur basins dipped below average this month, due to higher than normal decreases from May 1 storage levels. June 1 storage at the four irrigation reservoirs in the Owyhee and Malheur basins was 94 percent of average and 79 percent of capacity. Last year at this time, reservoirs in the basin were at 97 percent of capacity.

Summer streamflow forecasts in the Owyhee and Malheur basins remain well below normal. In general, water supply conditions are better in the Malheur River basin, and decrease as you move south. The June through September streamflow forecasts in the basin range from 24 percent of average for the Owyhee River near Rome to 58 percent of average for the Malheur River near Drewsey. Water users in the basin can continue to expect well below normal streamflows for the summer of 2012.

OWYHEE AND MALHEUR BASINS

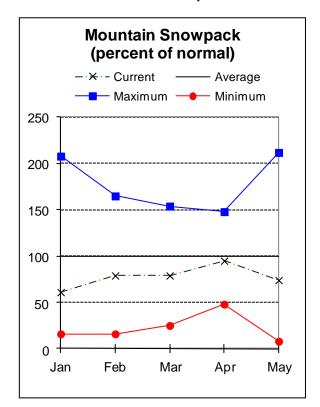
Streamflow Forecasts - June 1, 2012

	:========		=======	=======	========	- ==========		========	=========
	!	<<====	== Drier =	=====	Future Co	nditions ===	==== Wetter	====>>	I
Forecast Point	Forecast Period	====== 90% (1000AF)	70%			0%	30% (1000AF)	====== 10% (1000AF)	 30-Yr Avg. (1000AF)
Malheur R nr Drewsey	JUN-JUL JUN-SEP	2.8 4.0	4.7 6.2	 	6.2 8.0	54 58	8.0 10.0	10.9 13.4	11.5 13.7
NF Malheur R at Beulah (2)	JUN-JUL	6.8	9.0		10.6	69	12.4	15.2	15.3
Owyhee R bl Owyhee Dam (2)	JUN-JUL JUN-SEP	10.0 27	17.1 38	 	23 46	28 41	30 55	41 70	82 112
Owyhee R nr Rome	JUN-JUL JUN-SEP	1.4 3.6	4.3 9.2		11.5 22	16 24	23 35	39 54	71 91
OWYHEE AN Reservoir Storage (1	·		======	=====		Watershed Sn	EE AND MALHEU owpack Analys	is - June	1, 2012
Reservoir	Usable Capacity	This Year	le Storag Last Year		======================================		Numbe of Data Si	r This ====: tes Last	Year as % of Yr Average
BEULAH RES	60.0	53.6	57.9	46.9	Owyhe	======== e	 7	0	0
BULLY CREEK	30.0	18.7	24.0	23.4	Upper	Malheur	3	0	0
OWYHEE	715.0	565.6	721.3	614.6	 Jorda:	n Creek	2	0	0
WARMSPRINGS	191.0	146.5	166.5	145.9	 Bully 	Creek	0	0	0

For more information contact your local Natural Resources Conservation Service office: Ontario - (541) 889-7637

Willow Creek

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table. The average is computed for the 1971-2000 base period.


^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural volume - actual volume may be affected by upstream water management.

Burnt, Powder, Grande Ronde, and Imnaha Basins

June 1, 2012

Water Supply Outlook

For northeastern Oregon, May was a month of typical spring snowmelt bookended by snow storms at the beginning and end of the month. A streak of warm weather in mid-May increased the rate of snowmelt. This was followed by a big storm system that brought multiple inches of rain and snow to the mountains. As of June 1, only 3 SNOTEL sites out of 17 in the Burnt, Powder, Pine, Grande Ronde and Imnaha basins still had snow. Last year at this time, 11 of these 17 sites still had snow.

Despite significant precipitation during the late-May storm, May was a drier than normal month for northeastern Oregon. The Burnt, Powder, Pine, Grande Ronde and Imnaha basins received 71 percent of normal precipitation in May. Since the beginning of water year 2012, precipitation in the basin has been 100 percent of average.

June 1 storage at Phillips Lake, Thief Valley and Unity reservoirs was 94 percent of average and 86 percent of capacity.

The June through September streamflow forecasts range from 43 percent of average for the Powder River near Sumpter to 93 percent of average for the Imnaha River at Imnaha. Water users in the basin can expect well below normal to near normal streamflows for the summer of 2012.

For more information contact your local Natural Resources Conservation Service office: Enterprise- (541) 426-4588; Baker City - (541) 523-7121; LaGrande - (541) 963-4178

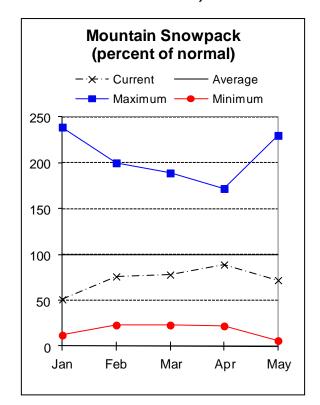
Or visit: http://www.or.nrcs.usda.gov/snow/watersupply/

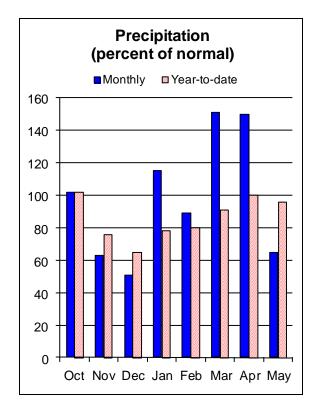
BURNT, POWDER, PINE, GRANDE RONDE AND IMNAHA BASINS Streamflow Forecasts - June 1, 2012

		======== 	 Drier	========== == Future Co	nditions ==	====== Wetter	=====>>	======================================
Forecast Point	Forecast Period	======= 90% (1000AF)	70% (1000AF)		60% (% AVG.)	30% (1000AF)	10% (1000AF)	 30-Yr Avg. (1000AF)
Bear Ck nr Wallowa	JUN-SEP	23	27	30	86	33	37	35
Burnt R nr Hereford (2)	JUN-JUL JUN-SEP	1.2 2.1	1.9 2.9	2.4	47 50	2.9 4.1	3.6 4.9	5.1 7.0
Catherine Ck nr Union	JUN-JUL JUN-SEP	14.4 17.8	17.4 21	19.4	78 79	21 25	24 28	25 29
Deer Ck nr Sumpter	JUN-JUL	0.2	1.1	1.7	44	2.2	3.1	3.8
Grande Ronde R at La Grande	JUN-JUL JUN-SEP	10.7 14.3	19.8 25	26 32	72 74	32 39	41 50	36 43
Grande Ronde R at Troy (1)	JUN-JUL JUN-SEP	250 330	355 435	400 485	85 86	445 535	550 640	470 565
Imnaha R at Imnaha	JUN-JUL JUN-SEP	92 110	103 123	 111 132	94 93	119 141	130 154	118 142
Lostine R nr Lostine	JUN-JUL JUN-SEP	58 65	63 70	 66 74	89 89	69 78	74 83	74 83
Pine Ck nr Oxbow	JUN-JUL JUN-SEP	33 37	40 45	45 50	82 81	50 55	57 63	55 62
Powder R nr Sumpter	JUN-JUL JUN-SEP	1.8 1.2	5.4 5.3	7.8 8.0	43 43	10.2 10.7	13.8 14.8	18.0 18.8

BURNT, POWDER, PINE, GR Reservoir Storage (10				BURNT, POWDER, PINE, GRANDE RONDE AND IMNAHA B Watershed Snowpack Analysis - June 1, 201					
Reservoir	Usable Capacity 	*** Usak This Year		ge *** Avg	Watershed	Number of Data Sites	=======	r as % of ====== Average	
PHILLIPS LAKE	73.5	64.9	76.2	65.3	Upper Grande Ronde	7	0	0	
THIEF VALLEY	17.4	13.5	14.3	17.0	Wallowa	4	27	80	
UNITY	25.2	21.1	24.7	23.1	Imnaha	3	36	87	
WALLOWA LAKE	37.5	24.0	21.0	28.0	Powder	7	0	0	
WOLF CREEK	10.4	11.0	11.1	9.8	Burnt	2	0	0	

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.


The average is computed for the 1971-2000 base period.


- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
- (2) The value is natural volume actual volume may be affected by upstream water management.

Umatilla, Walla Walla, Willow Rock, and Lower John Day Basins

June 1, 2012

Water Supply Outlook

May was a dry month in the Umatilla, Walla Walla, Willow, Rock and Lower John Day basins. However, the month was punctuated by two storm systems that brought spring rains to the region. The cool, wet storm event in late May brought several inches of snow accumulation to the higher elevations of the basin, but it melted quickly. As of June 1, Milk Shakes SNOTEL site was the only SNOTEL site that still had snow in the basin. Last year at this time, 4 of the 8 sites in the basin were still recording significant snowpack.

Despite the significant rain storm in late May, precipitation for the month in the basin was only 65 percent of average. Since the beginning of water year 2012, precipitation has been 96 percent of average for the basin.

As of June 1, storage at Cold Springs and MacKay reservoirs was 85 percent of average and 72 percent of capacity.

The June through September streamflow forecasts in the basin range from 84 percent of average for the Butter Creek near Pine City to 100 percent of average for the South Fork Walla Walla River near Milton-Freewater. Water users in the basin can expect slightly below normal to normal streamflows for the summer of 2012.

For more information contact your local Natural Resources Conservation Service office: Pendleton - (541) 278-8049; Heppner - (541) 676-5021; Condon - (541) 384-2671 Or visit: http://www.or.nrcs.usda.gov/snow/watersupply/

UMATILLA, WALLA WALLA, WILLOW, ROCK AND LOWER JOHN DAY BASINS

Streamflow Forecasts - June 1, 2012

		İ	======================================								
Forecast Point	Forecast Period	======= 90% (1000AF)	70% (1000AF)	5	Exceeding * = 50%	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)			
Butter Ck nr Pine City	JUN-JUL JUN-SEP	0.4	0.9	1.3	85 84	1.6	2.2	1.5			
McKay Ck nr Pilot Rock	JUN-SEP	0.2	1.8	3.0	94	4.2	6.0	3.2			
Rhea Ck nr Heppner	JUN-JUL	0.1	0.7	1.2	90	1.6	2.3	1.3			
Umatilla R ab Meacham Ck nr Gibbon	JUN-JUL JUN-SEP	7.2 11.7	10.5 15.2	12.7 17.5	88 88	14.9 19.8	18.2 23	14.4 20			
Umatilla R at Pendleton	JUN-JUL JUN-SEP	5.8 10.4	14.9 19.7	21 26	91 90	27 32	36 42	23 29			
SF Walla Walla R nr Milton-Freewater	r JUN-JUL JUN-SEP	14.2 27	17.2 30	19.2	100 100	21 36	24 39	19.2 33			
Willow Ck ab Willow Ck Lake nr Heppr	n JUN-JUL	-0.0	0.6	1.0	67 	1.4	2.0	1.5			

UMATILLA, WALLA WALLA, WILLOW, ROCK AND LOWER JOHN DAY BASINS

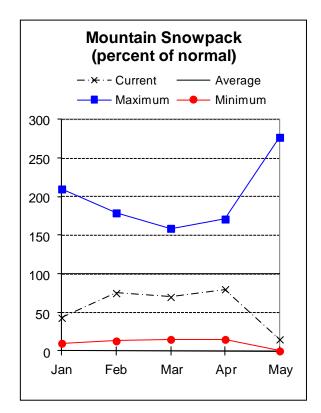
|UMATILLA, WALLA WALLA, WILLOW, ROCK AND LOWER JOHN DAY

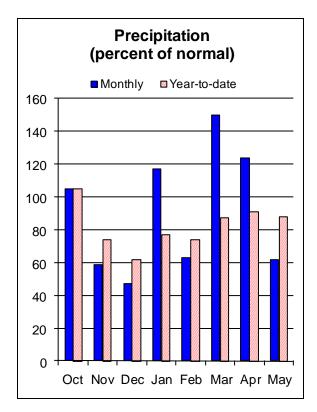
2110 1110								
	Reservoir	Storage	(1000	AF)	-	End	of I	May

Watershed Snowpack Analysis - June 1, 2012

Reservoir	Usable Capacity	*** Usable Storage ' This Last		ge *** 	Watershed	======================================	This Year as % of	
			Year	Avg		Data Sites	Last Yr	Average
COLD SPRINGS	44.6	22.9	29.4	39.2	Walla Walla	2	0	0
MCKAY	73.8	62.8	65.3	62.0	Umatilla	5	0	0
WILLOW CREEK	1.8	6.1	2.2	i	McKay Creek	3	0	0
=======================================	========							

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table. The average is computed for the 1971-2000 base period.


^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.


^{(2) -} The value is natural volume - actual volume may be affected by upstream water management.

Upper John Day Basin

June 1, 2012

Water Supply Outlook

May was a very dry month in the Upper John Day basin. Two rain events, one at the beginning and one at the end of the month, provided bookends for the storm-free period in between. May precipitation was only 62 percent of average. Since the beginning of water year 2012, precipitation in the basin has been 88 percent of average.

The remaining snow melted from all of the SNOTEL sites in the basin during May. Last year at this time, 4 of the 13 sites were still recording snow.

The June through September streamflow forecasts range from 61 percent of average for Mountain Creek near Mitchell to 98 percent of average for Strawberry Creek near Prairie City. Water users in the basin can expect well below normal to near normal streamflows for the summer of 2012.

UDDED TOWN DAY DAGIN

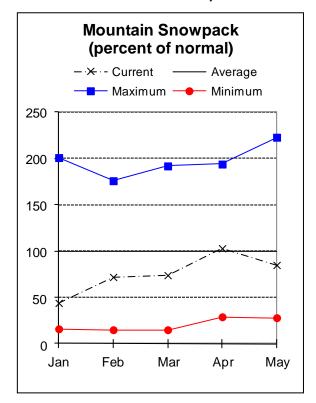
UPPER JOHN DAY BASIN Streamflow Forecasts - June 1, 2012

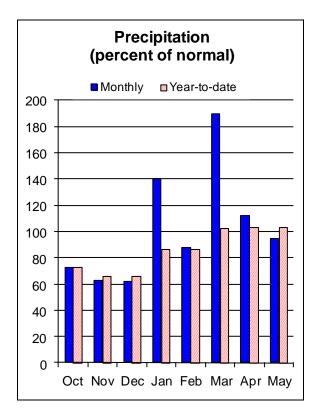
		 <<====== 	= Drier ====	=== Future	Conditions ===	==== Wetter	====>>	
Forecast Point	Forecast Period	======= 90% (1000AF)	70% (1000AF)	1	Exceeding * == 50% (% AVG.)	30% (1000AF)	10% (1000AF)	 30-Yr Avg. (1000AF)
Camas Ck nr Ukiah	JUN-JUL JUN-SEP	-0.0 0.5	2.1 2.7	3.6 4.2	======================================	5.1 5.7	7.2 7.9	4.9 5.7
MF John Day R at Ritter	JUN-JUL JUN-SEP	4.5 5.9	12.8 14.9	18.5	64 62	24 27	32 36	29 34
NF John Day R at Monument	JUN-JUL JUN-SEP	28 37	63 75	87 100	64 65	111 125	146 163	136 154
Mountain Ck nr Mitchell	JUN-JUL JUN-SEP	0.0 -0.0	0.3	0.5	57 61	0.7 0.8	1.0 1.1	0.9
Strawberry Ck nr Prairie City	JUN-JUL JUN-SEP	2.9	3.9 4.6	 4.6 5.3	98 98 98	5.3 6.0	6.3 7.1	4.7 5.4
UPPER Jo Reservoir Storage (1	OHN DAY BASIN 000 AF) - End	of May		 	UP Watershed Sno	====== PER JOHN DAY owpack Analys	-	L, 2012
Reservoir	Usable Capacity	*** Usabl This Year	le Storage ' Last Year <i>I</i>		ershed	Numbe of Data Si	====	Year as % of Yr Average
	========	========	========	Nor	========= th Fork John Da	======================================	0	0

* 90%, 70%, 50%, 30%, and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

John Day above Kimberly 5 0

The average is computed for the 1971-2000 base period.


- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
- (2) The value is natural volume actual volume may be affected by upstream water management.


For more information contact your local Natural Resources Conservation Service office: John Day - (541) 575-0135

Upper Deschutes and Crooked Basins

June 1, 2012

Water Supply Outlook

The mountains of central Oregon experienced two May snow storms, bringing several inches of snowfall to SNOTEL sites in the higher elevations of the Upper Deschutes and Crooked basins. These storms bracketed a long period of warm, dry weather, and typical spring snowmelt in the middle of the month. As of June 1, only 3 of the 14 SNOTEL sites in the basin still had snow.

May precipitation was quite variable for the measurement sites across the basin. On average, precipitation for the month was 95 percent of normal. Since the beginning of water year 2012, precipitation in the Upper Deschutes and Crooked basins has been 103 percent of average. In general, the sites on the Crooked River side of the basin have been significantly drier all winter than those on the western part of the basin.

The June 1 storage at five irrigation reservoirs in the basin was 114 percent of average and at 94 percent of capacity. Above average reservoir storage in the Crooked River basin may provide a buffer for the very low streamflows that are anticipated this summer.

Streamflow forecasts in the Upper Deschutes and Crooked River basins vary greatly from east to west. The June through September streamflow forecasts range from 31 percent of average for the Prineville Reservoir Inflow to 117 percent of average for the Little Deschutes River near La Pine. Users that depend on water supplies from the east side of the basin should expect well below normal streamflows, while users in the western part of the basin can expect normal to above normal streamflows for the summer of 2012.

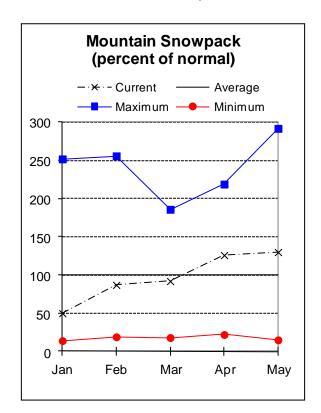
For more information contact your local Natural Resources Conservation Service office: Redmond (541) 923-4358

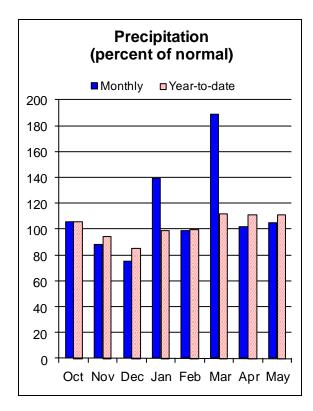
UPPER DESCHUTES AND CROOKED BASINS Streamflow Forecasts - June 1, 2012

	=======	======== 	======================================	======================================	nditions ==	====== Wetter	====>>	========
Forecast Point	Forecast Period	 ======= 90% (1000AF)	70% (1000AF)		00% (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
Crane Prairie Reservoir Inflow (2)	JUN-JUL JUN-SEP	28 57	31 64	34 68	100 100	37 72	40 79	34 68
Crescent Ck nr Crescent (2)	JUN-JUL JUN-SEP	5.2 8.5	7.4 11.2	8.9 13.1	111 112	10.4 15.0	12.6 17.7	8.0 11.7
Deschutes R at Benham Falls nr Bend	JUN-JUL JUN-SEP	158 320	171 340	 179 355	101 100	187 370	200 390	177 355
Deschutes R bl Snow Ck nr La Pine	JUN-JUL JUN-SEP	14.0 37	17.6 43	 20 47	103 104	22 51	26 57	19.5 45
Little Deschutes R nr La Pine (2)	JUN-JUL JUN-SEP	21 29	27 36	 31 41	119 117	35 46	41 53	26 35
Ochoco Reservoir Inflow (2)	JUN-JUL JUN-SEP	0.1	0.9	 1.5 1.0	52 35	3.6 3.3	5.2 4.9	2.9 2.9
Prineville Reservoir Inflow (2)	JUN-JUL JUN-SEP	0.5 0.5	2.8 3.0	 3.0 3.1	33 31	7.4 7.9	13.9 15.0	9.2 10.1
Whychus Ck nr Sisters	JUN-JUL JUN-SEP	21 33	23 35	 24 37	100 103	25 39	27 41	24 36

UPPER DESCHUTES Reservoir Storage (10		 	UPPER DESCHUTES AND CROOKED BASINS Watershed Snowpack Analysis - June 1, 2012					
Reservoir	Usable Capacity 	*** Usa This Year	ble Stora Last Year	ge *** Avg	Watershed	Number of Data Sites	This Yea ====== Last Yr	r as % of ====== Average
CRANE PRAIRIE	55.3	51.4	48.8	42.5	Crooked	3	0	0
CRESCENT LAKE	86.9	80.8	79.0	58.9	Little Deschutes	4	33	94
осносо	47.5	40.8	42.5	35.9	Deschutes above Wickiup	R 4	22	69
PRINEVILLE	153.0	143.0	149.2	142.2	Tumalo and Squaw Creeks	2	31	99
WICKIUP	200.0	191.8	182.5	166.6 				

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table..


The average is computed for the 1971-2000 base period.


- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
- (2) The value is natural volume actual volume may be affected by upstream water management.

Hood, Mile Creeks, and Lower Deschutes Basins

June 1, 2012

Water Supply Outlook

May began with significant snow accumulation in the mountains of northwest Oregon. Several sites saw more than a foot of new snowfall before spring weather returned and the snowmelt engine revved up again. Warm temperatures and dry weather throughout mid-May caused typical spring snowmelt. And then winter got one final chance to shine at the end of the month, with a storm system that delivered 9 inches of new snow to Mt Hood Test SNOTEL site. As of June 1, the basin snowpack was 140 percent of average and 5 out of 8 SNOTEL sites in the basin were still recording snow.

Capping off a very wet spring in northwest Oregon, May precipitation was 105 percent of normal for the Hood, Mile Creeks and Lower Deschutes basins. This was the only basin in the state with above normal May precipitation. According to the National Weather Service, the long-term rain gage at the Portland International Airport set a record for March thru May precipitation with 14.53 inches of rain in a 3-month period. Since the beginning of water year 2012, precipitation in the basin has been 111 percent of average, the highest in the state.

The June through September streamflow for Hood River at Tucker Bridge is forecast to be 117 percent of average. Water users in the Hood, Mile Creeks and Lower Deschutes basin can expect above normal streamflows during the summer of 2012.

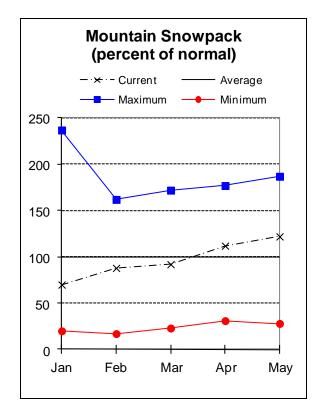
For more information contact your local Natural Resources Conservation Service office: The Dalles (541) 296-6178

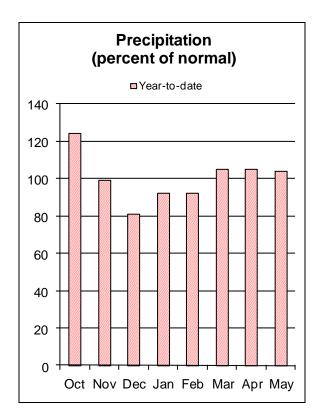
HOOD, MILE CREEKS AND LOWER DESCHUTES BASINS

Streamflow Forecasts - June 1, 2012

		Streamflow 	v Forecast 	s - Ju	ine 1, 201	l2 				
Forecast Point	Forecast Period				nance Of E	enditions == Exceeding * = 0% (% AVG.)	30	======================================	 	30-Yr Avg. (1000AF)
WF Hood River nr Dee Hood R At Tucker Bridge	JUN-JUL JUN-JUL JUN-SEP	33 81 123	41 89 137	== === 	46 95 146	115 116 117	1		59 109 169	40 82 125
HOOD, MILE CREEKS A Reservoir Storage (1		of May	======= NS ======== Le Storage	===== ***		DOD, MILE CRE Watershed Sr	nowpack A		- June 1,	
Reservoir	Capacity 	This Year	Last Year	Avg	Water	rshed	Da	of ta Sites		Average
CLEAR LAKE (WASCO)	11.9	10.2	7.9	5.9	Hood	River		5	59	147
					Mile	Creeks		0	0	0
					 Whit∈	e River		4	66	109

* 90%, 70%, 50%, 30%, and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.


The average is computed for the 1971-2000 base period.


- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
- (2) The value is natural volume actual volume may be affected by upstream water management.

Lower Columbia Basin

June 1, 2012

Water Supply Outlook

On June 1, the snowpack in the Columbia River basin was 122 percent of average, as measured by 235 SNOTEL sites in the US portion of the basin. Precipitation in the US portion of the basin since October 1 has been 104 percent of average.

Streamflow forecasts for the Oregon portion of the Lower Columbia River Basin remain largely unchanged from last month's report. The Columbia River at The Dalles is forecast to be 116 percent of average for the June through September period, and the Sandy River near Marmot is forecast to be 115 percent of average for the same period.

LOWER COLUMBIA BASIN Streamflow Forecasts - June 1, 2012

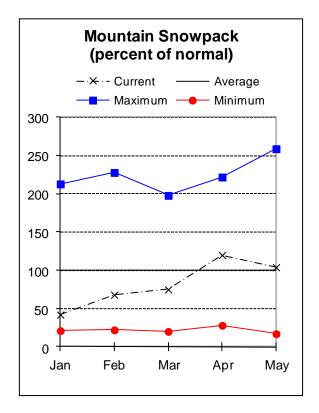
		Streamflow	Forecasts	- June 1, 20	012			
	 	<<=====	======================================	======================================	======================================	======= Wetter	· ====>> 	
Forecast Point	Forecast Period 	90% (1000AF)	70% (1000AF)	== Chance Of (1000AF)	50%	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
Columbia R at The Dalles (2)	JUN-JUL JUN-SEP	42900 59400	46200 63800	48500 66800	111 116	50800 69800	54100 74200	43800 57800
Sandy R nr Marmot	JUN-JUL JUN-SEP	106 154	119 171	127 1 183	117 115	135 195	148 210	109 159
LOWER CO Reservoir Storage (10	DLUMBIA BASIN 000 AF) - End	of May		 		LOWER COLUMBIA Snowpack Analys		., 2012
Reservoir	Usable Capacity 	*** Usabl This Year	e Storage ' Last Year <i>I</i>		ershed	Numbe of Data Si	====	Year as % of Yr Average

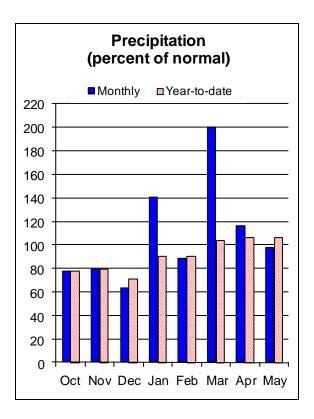
* 90%, 70%, 50%, 30%, and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

Sandy

52

140


The average is computed for the 1971-2000 base period.


- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
- (2) The value is natural volume actual volume may be affected by upstream water management.

Willamette Basin

June 1, 2012

Water Supply Outlook

May opened with a snow storm in the Cascade Mountains of Oregon, and departed with another snow event in the high elevations of the Willamette basin. Accumulations of several inches were common even down to 4200 feet elevation. In between these two storm systems, the month was generally dry and warm, which lead to typical spring snowmelt rates. As of June 1, 5 of 22 SNOTEL sites in the basin were still recording snow. Last year at this time, 12 of these 22 sites had measurable snow.

Precipitation for the month of May was 98 percent of average. Since the beginning of water year 2012, precipitation in the basin has been 106 percent of average.

The June 1 storage at Timothy Lake and Henry Hagg reservoirs was 102 percent of average and at 101 percent of capacity.

Summer streamflows in the Willamette basin are forecast to be normal to above normal for the coming summer. The June through September streamflow forecasts for the basin range from 100 percent of average for Cottage Grove Lake Inflow to 119 percent of average for Detroit Lake Inflow and North Santiam River at Mehama. Elsewhere in the basin, the McKenzie near Vida is forecast to be 112 percent of average and the Willamette River at Salem is forecast to be 116 percent of average for the June through September period.

For more information contact your local Natural Resources Conservation Service office: Eugene - (541) 465-6436; Portland - (503) 231-2270; Tangent - (541) 967-5925; Oregon City - (503) 656-3499; Hillsboro - (503) 648-3174; McMinnville - (503) 472-1474 Salem - (503) 399-5746; Dallas - (503) 623-5534

WILLAMETTE BASIN Streamflow Forecasts - June 1, 2012

	======== <<=====	:=====>>	=========					
Forecast Point	Forecast Period	 ======= 90% (1000AF)	70% (1000AF)		50%	30% (1000AF)	10% 10% (1000AF)	30-Yr Avg. (1000AF)
Blue Lake Inflow (1,2)	JUN-SEP	6.6	16.5	 21	110	 26	35	19.1
Clackamas R at Estacada	JUN-JUL JUN-SEP	158 275	205 330	240 365	114 115	275 400	320 455	210 318
Clackamas R ab Three Lynx (2)	JUN-JUL JUN-SEP	136 235	164 265	183 285	116 116	200 305	230 335	158 246
Cottage Grove Lake Inflow (1,2)	JUN-SEP	3.7	8.0	10.0	100	12.0	16.3	10.0
Cougar Lake Inflow (1,2)	JUN-SEP	69	85	 92	103	 99	115	89
Detroit Lake Inflow (1,2)	JUN-SEP	235	295	320	119	345	405	268
Dorena Lake Inflow (1,2)	JUN-SEP	5.9	25	 34	110	43	62	31
Fall Creek Lake Inflow (1,2)	JUN-SEP	14.5	26	 31	107	 36	48	29
Fern Ridge Lake Inflow (1,2)	JUN-JUL	0.4	1.0	1.5	112	4.4	10.9	1.3
Foster Lake Inflow (1,2)	JUN-SEP	117	147	160	103	173	205	156
Green Peter Lake Inflow (1,2)	JUN-SEP	43	87	107	102	127	171	105
Little North Santiam R nr Mehama (1)	JUN-SEP	19.2	41	 51	116	61	83	44
MF Willamette R bl NF (1,2)	JUN-SEP	245	300	 325	102	 350	405	320
McKenzie R bl Trail Bridge (2)	JUN-JUL JUN-SEP	105 185	115 200	 122 210	106 105	 129 220	139 235	115 200
McKenzie R nr Vida (1,2)	JUN-SEP	540	620	 655 =======	112	690 	770	584

For more information contact your local Natural Resources Conservation Service office:

Eugene - (541) 465-6436; Portland - (503) 231-2270; Tangent - (541) 967-5925; Oregon City - (503) 656-3499; Hillsboro - (503) 648-3174; McMinnville - (503) 472-1474 Salem - (503) 399-5746; Dallas - (503) 623-5534

	 					nditions ====		====>>	
Forecast Point	Forecast Period 	90% (1000AF)	70% (1000AF)		(1000AF)	<pre>xceeding * ===: 0%</pre>	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
Mohawk R nr Springfield	JUN-JUL	9.1	15.0		19.0	107	23	29	17.7
Oak Grove Fork Of Clackamas	JUN-JUL JUN-SEP	48 85	54 95		58 101	116 116	62 107	68 117	50 87
North Santiam R at Mehama (1,2)	JUN-SEP	260	355		400	119	445	540	336
South Santiam R at Waterloo (2)	JUN-JUL JUN-SEP	115 149	127 164		135 175	104 104	143 186	155 200	130 169
Scoggins Ck nr Gaston (2)	JUN-JUL	0.8	1.5		2.0	115	2.5	3.2	1.7
Thomas Ck nr Scio	JUN-JUL	0.7	11.7		20	116	28	40	17.2
Willamette R at Salem (1,2)	JUN-SEP	1340	1750		1930	116	2110	2520	1664
WILLAM Reservoir Storage (10	·	_				Watershed Snow		is - June 1	
Reservoir		*** Usab This Year			 Water		Numbe of Data Si	r This	Year as % of
BLUE RIVER	======== 85.5		76.8	_	 ====== Clack	:======== :amas		======================================	_
COTTAGE GROVE	29.8	31.4	28.2	29.9	 McKen	zie	7	32	70
COUGAR	155.2	173.9	128.7	205.4	 Row R	liver	1	0	0
DETROIT	300.7	429.9	282.2	317.5	 Santi	am	6	5	17
DORENA	70.5	71.1	62.8	71.3	Middl	e Fork Willame	tte 7	26	80

For more information contact your local Natural Resources Conservation Service office:

107.0 |

95.9

106.1

93.7

116.1

96.9

115.5

109.6

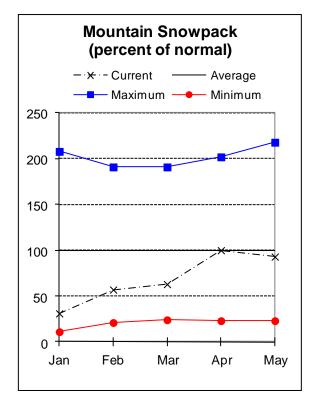
FALL CREEK

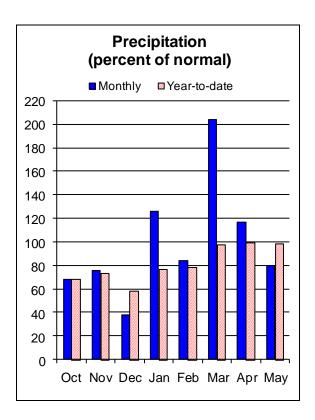
FERN RIDGE

Eugene - (541) 465-6436; Portland - (503) 231-2270; Tangent - (541) 967-5925; Oregon City - (503) 656-3499; Hillsboro - (503) 648-3174; McMinnville - (503) 472-1474 Salem - (503) 399-5746; Dallas - (503) 623-5534

WILLAME Reservoir Storage (100	TTE BASIN O AF) - End	of May		======================================	WILLAMETTE BASIN Watershed Snowpack Analysis - June 1, 2012				
Reservoir	Usable Capacity 	This	ble Stora Last Year	_	Watershed	Number of Data Sites	=======	r as % of ====== Average	
FOSTER	29.7	45.7	24.8	28.5				=======	
GREEN PETER	268.2	398.0	228.3	306.6					
HILLS CREEK	200.2	278.7	189.8	232.5					
LOOKOUT POINT	337.0	382.6	271.8	307.7					
TIMOTHY LAKE	61.7	62.2	62.6	60.8					
HENRY HAGG LAKE	53.0	53.4	53.3	52.4					

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.


The average is computed for the 1971-2000 base period.


- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
- (2) The value is natural volume actual volume may be affected by upstream water management.

Rogue and Umpqua Basins

June 1, 2012

Water Supply Outlook

Even though most of the SNOTEL sites in the Rogue and Umpqua basins had already melted out by late May, a rare spring snow storm dropped several inches of snow down to 4500 feet elevation. This new snow quickly melted though, and as of June 1, all but three SNOTEL sites were devoid of snow. Last year at this time, 9 of the 12 SNOTEL sites in the basin were still recording snow.

Despite the late-May storm event, May was drier than normal across southwest Oregon. Precipitation for the month was 80 percent of average in the Rogue and Umpqua basins. Since October 1, the water year precipitation has been 98 percent of average.

The June 1 storage at 5 irrigation reservoirs in the Rogue and Umpqua basins was 112 percent of average and at 95 percent of capacity.

The June through September streamflow forecasts range from 81 percent of average for the Rogue River at Raygold to 122 percent of average for the South Umpqua River near Brockway. Elsewhere in the basin, the Illinois River at Kerby is forecast to be 116 percent of average for the same period. Water users in the Rogue and Umpqua basins can expect below normal to above normal streamflows for the coming summer, depending on their location within the basin.

For more information contact your local Natural Resources Conservation Service office:

Roseburg - (541) 673-8316; Medford - (541) 776-4267

Or visit: http://www.or.nrcs.usda.gov/snow/watersupply/

DOCITE AND IMPORTA DACING

ROGUE AND UMPQUA BASINS Streamflow Forecasts - June 1, 2012

Forecast Point	Forecast	•		======================================				========
======================================	Period	90% (1000AF)	70% (1000AF)	5000AF)	0% (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
Applegate Lake Inflow (2)	JUN-JUL JUN-SEP	16.8 22	25 30	30 36	100	35 42	43 50	30 36
SF Big Butte Ck nr Butte Falls	JUN-JUL JUN-SEP	8.7 16.3	10.8 19.1	12.2	103 100	13.6 23	15.7 26	11.9 21
Cow Ck nr Azalea (2)	JUN-JUL JUN-SEP	1.9 2.2	2.8	3.5	117 117	4.2 6.0	5.1 7.6	3.0 4.2
Hyatt Prairie Reservoir Inflow (2)	JUN-JUL	0.0	0.2	0.3	75	0.6	1.1	0.4
Illinois R at Kerby	JUN-JUL JUN-SEP	13.8 21	26 34	35 43	117 116	44 52	56 65	30 37
NF Little Butte Ck nr Lakecreek (2)	JUN-JUL JUN-SEP	13.4 26	16.1 30	17.9 33	103 104	19.7 36	22 40	17.4 32
Lost Creek Lake Inflow (2)	JUN-JUL JUN-SEP	165 275	189 310	 205 330	93 93	220 350	245 385	220 355
Rogue R at Raygold (2)	JUN-JUL JUN-SEP	136 265	177 310	205 340	80 81	235 370	275 415	255 420
Rogue R at Grants Pass (2)	JUN-JUL JUN-SEP	142 250	182 300	210 335	88 87	240 370	280 420	240 385
Sucker Ck bl Ltl Grayback Ck nr Holl	JUN-JUL JUN-SEP	9.0 12.6	12.0 15.9	14.1	104 102	16.2	19.2 24	13.6 17.8
North Umpqua R at Winchester	JUN-JUL JUN-SEP	225 360	265 400	290 430	121 119	315 460	355 500	240 360
South Umpqua R nr Brockway	JUN-JUL JUN-SEP	51 73	72 95	 86 110	125 122	100 125	121 147	69 90
South Umpqua R at Tiller	JUN-JUL JUN-SEP	25 36	38 49	 47 58	115 114	56 67	69 80	41 51

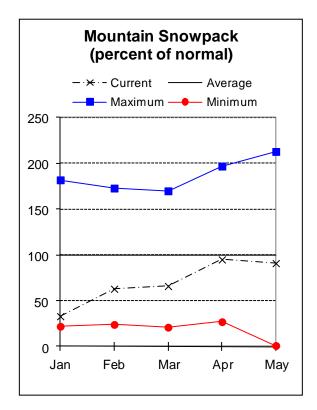
For more information contact your local Natural Resources Conservation Service office:

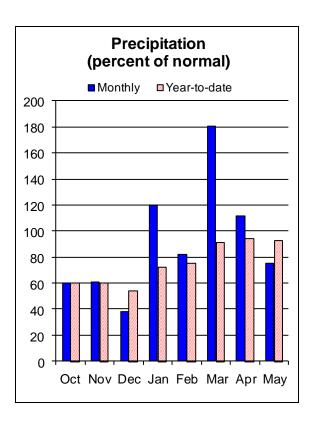
Roseburg - (541) 673-8316; Medford - (541) 776-4267

ROGUE AND UMPQUA BASINS | ROGUE AND UMPQUA BASINS Reservoir Storage (1000 AF) - End of May | Watershed Snowpack Analysis - June 1, 2012

				'				
Reservoir	Usable Capacity	*** Usa This	ble Stora Last	ge ***	Watershed	Number of	This Year as %	
	i	Year	Year	Avg		Data Sites	Last Yr	Average
APPLEGATE	75.2	68.9	67.3	66.8	Applegate	2	8	42
EMIGRANT LAKE	39.0	37.7	38.9	35.3	Bear Creek	1	9	42
FISH LAKE	8.0	7.5	6.4	6.6	Little Butte Creek	3	0	0
FOURMILE LAKE	16.1	15.5	12.5	12.5	Illinois	1	0	0
HOWARD PRAIRIE	60.0	56.4	61.2	50.2	North Umpqua	3	51	113
HYATT PRAIRIE	16.1	15.7	16.1	13.5	Rogue River above Grant	.s 9	12	46
LOST CREEK	315.0	313.8	170.8	305.3				
	:=========	=======	:=======	 ======			=======	=======

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.


The average is computed for the 1971-2000 base period.


- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
- (2) The value is natural volume actual volume may be affected by upstream water management.

Klamath Basin

June 1, 2012

Water Supply Outlook

The Klamath basin experienced two storm systems bracketed by a long warm, dry period in May. A rare spring snow storm in late-May brought measureable snowfall to many mountain snow measurement sites in the basin. This new snow melted fast though, and as of June 1, Annie Springs SNOTEL site was the only SNOTEL site in the basin still recording snow. Last year at this time, 9 of the 17 snow measurement sites in the basin were still measuring snow.

Despite the two storm events, May was much drier than normal in the Klamath Basin. Monthly precipitation was 75 percent of average. Since the beginning of water year 2012, precipitation in the basin has been 93 percent of average.

The June 1 storage at Upper Klamath Lake, Clear Lake (CA) and Gerber reservoirs was 74 percent of average and at 53 percent of capacity.

The streamflow forecasts in the Klamath basin decreased slightly since last month's report. The June through September streamflow forecasts for the basin range from 63 percent of average for Gerber Reservoir Inflow to 90 percent of average for the Williamson River below Sprague. Water users in the basin can expect well below normal to slightly below normal streamflows for the summer of 2012.

For more information contact your local Natural Resources Conservation Service office: Klamath Falls - (541) 883-6932

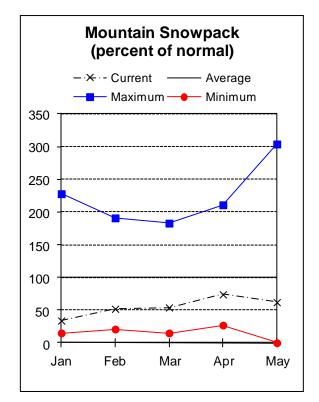
KLAMATH BASIN Streamflow Forecasts - June 1, 2012

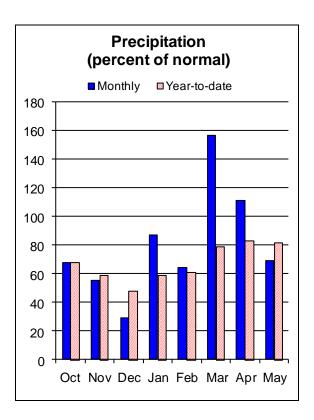
=======================================	========	Streamilo ======	w roleca:	sis - Ju. =======	ne 1, 201. =======	∠ ==========	.========	=======	
		<<====	= Drier =	=====	Future Co	nditions ====	=== Wetter ==	===>>	
Forecast Point	Forecast Period	====== 90% (1000AF)	70% (1000AI			, , ,	30%	 -===== 10% 1000AF)	30-Yr Avg. (1000AF)
Clear Lake Inflow (2)	JUN-JUL JUN-SEP	0.3 0.6	2.0 5.6	 	5.5 9.0	76 74	9.0 12.4	14.2 17.4	7.2 12.1
Gerber Res Inflow (2)	JUN-JUL JUN-SEP	0.0	0.4		1.0 1.5	56 63	1.5	2.7 4.1	1.8 2.4
Sprague R nr Chiloquin	JUN-JUL JUN-SEP	30 49	41 61		48 70	86 85	55 79	66 91	56 82
Upper Klamath Lk Inflow (1)	JUN-JUL JUN-SEP	48 105	80 153		95 175	86 88	110 197	142 245	110 198
Williamson R bl Sprague R nr Chiloqu	JUN-JUL JUN-SEP	66 116	78 133	 	87 145	89 90	96 157	108 174	98 162
KLAMAT Reservoir Storage (1000	======= H BASIN AF) - End	of May	======	======	======================================	 F Watershed Snowy	KLAMATH BASIN Dack Analysis		2012
======================================	Usable Capacity	*** Usab This	le Storaç Last	ge ***	======================================	======================================	Number of	_	======= ear as % of ========
		Year =======	Year ======	Avg ======	 =======		Data Sites		
CLEAR LAKE (CALIF)	513.3	117.9	187.1	256.5	Lost		2	0	0
GERBER	94.3	58.6	71.0	68.4	 Sprag	ue	5	0	0
UPPER KLAMATH LAKE	523.7	424.1	470.6	487.0	Upper	Klamath Lake	6	11	40
					 Willi	amson River	4	27	68

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table. The average is computed for the 1971-2000 base period.

For more information contact your local Natural Resources Conservation Service office:

Klamath Falls - (541) 883-6932


^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.


^{(2) -} The value is natural volume - actual volume may be affected by upstream water management.

Lake County and Goose Lake

June 1, 2012

Water Supply Outlook

Dry conditions returned to the Lake County and Goose Lake basins during May. Precipitation for the month was only 69 percent of average. The total precipitation since October 1 has been 82 percent of average, the lowest in the state.

A rare late-May snowstorm brought measureable snow to most of the SNOTEL sites in the basin, but all 9 of the SNOTEL sites had melted out completely as of June 1. Last year at this time, 4 of the 9 sites still had significant snowpack.

Reservoir storage in the Lake County and Goose Lake basins remains above average, which may provide some relief from low water supply conditions. June 1 storage at Cottonwood and Drews reservoirs was 108 percent of average and at 87 percent of capacity.

Summer streamflow forecasts in the Lake County and Goose Lake basins decreased significantly since May 1. The June through September streamflow forecasts for the basin range from 47 percent of average for Deep Creek near Adel to 65 percent of average for Chewaucan River near Paisley. Water users in the basin can expect well below normal streamflows for the summer of 2012.

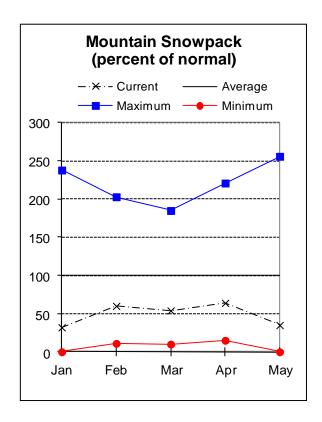
For more information contact your local Natural Resources Conservation Service office: Lakeview - (541) 947-2202

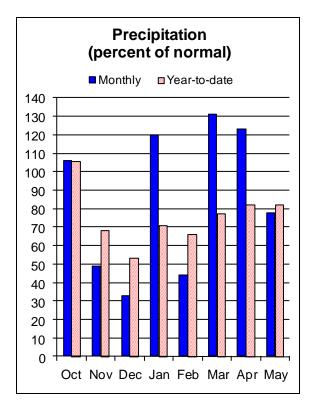
LAKE COUNTY AND GOOSE LAKE BASINS

Streamflow Forecasts - June 1, 2012

		<<====	== Drier ==	====	Future Co	nditions ====	==== ₩∈	tter ===	==>>	
Forecast Point	Forecast Period	====== 90% (1000AF)	70%		5	<pre>xceeding * === 0%</pre>	30% 30%	1	0% 00AF)	30-Yr Avg. (1000AF)
Chewaucan R nr Paisley	JUN-JUL JUN-SEP	4.4 7.4	9.4 12.6	 	12.8 16.2	64 65	16. 19.		21 25	20 25
Deep Ck ab Adel	JUN-JUL JUN-SEP	1.2 2.2	4.7 5.9		7.1 8.4	45 47	9. 10.		3.0 4.6	15.7 17.8
Honey Ck nr Plush	JUN-JUL JUN-SEP	0.3	1.2 1.3		1.8	54 54	2. 2.		3.4 3.6	3.4 3.6
Silver Ck nr Silver Lake (2)	JUN-JUL	0.0	0.1	į	0.7	73	1.	2	2.1	0.9
Twentymile Ck nr Adel	JUN-JUL JUN-SEP	0.2	1.0	 	2.0	49 50	3. 3.		4.4	4.1 4.6
Reservoir Storage (1	•	of May	=======			LAKE COUN' Watershed Snow	wpack Ar	alysis -	June 1,	
Reservoir	Usable Capacity 		le Storage Last Year		======= Water 		N	umber of a Sites	This Y	ear as % of =======
COTTONWOOD	8.7	7.8	9.3	6.8	1	ucan River		3	0	0
DREWS	63.0	54.9	63.5	51.0	 Deep	Creek		0	0	0
					 Drew	Creek		2	0	0
					 Honey	Creek		0	0	0
					 Silve 	r Creek (Lake	Co.)	4	0	0

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table. The average is computed for the 1971-2000 base period.


For more information contact your local Natural Resources Conservation Service office: Lakeview - (541) 947-2202


Twentymile Creek

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural volume - actual volume may be affected by upstream water management.

Water Supply Outlook

May precipitation amounts varied across the Harney basin. In the northern part of the basin, the monthly rainfall amounts were close to average, but conditions decreased significantly to the south. Overall, May precipitation was 78 percent of average in the Harney basin. Since the beginning of water year 2012, precipitation in the basin has been 82 percent of average, the lowest in the state.

All SNOTEL sites in the Harney basin were melted out as of June 1. For most sites, this is a normal occurrence. However, last year at the end of May, Fish Creek SNOTEL in the Steens Mountains still had 100 inches of snow depth (49 inches of snow water). In contrast, this year it peaked at 70 inches of snow depth (22 inches of snow water) back in April and melted out by June 1, which is earlier than normal.

Summer streamflow forecasts in the Harney basin remain significantly below normal as June 1. The June through September streamflow forecasts in the basin range from 13 percent of average for Trout Creek near Denio to 44 percent of average for the Donner Und Blitzen River near Frenchglen. Water users in the basin can expect significantly below normal streamflows for the summer of 2012.

For more information contact your local Natural Resources Conservation Service office: Hines - (541) 573-6446

HARNEY BASIN Streamflow Forecasts - June 1, 2012

		Streamflow	Forecast	s - Ju	ne 1, 201	2				
		 <<===== 		====	Future Co	nditions ===	-==== V	Vetter ===	===>>	
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)	 	5 (1000AF)	xceeding * == 0%	3((10()% 1)OAF) (10	.0% 00AF)	30-Yr Avg. (1000AF)
Donner Und Blitzen R nr Frenchglen	JUN-JUL JUN-SEP	2.3 5.1	6.6 10.1	 	9.6 13.5	38 44	12		6.9	25 31
Silvies R nr Burns	JUN-JUL JUN-SEP	0.1 0.3	0.3		4.5 5.9	34 37			4.8	13.3 16.0
Trout Ck nr Denio	JUN-JUL JUN-SEP	0.1	0.3		0.3	9 13			1.5 1.9	2.9 3.6
HARNE Reservoir Storage (100	Y BASIN O AF) - End	of May		=====	======= 	Watershed Sno		BASIN Analysis -	June 1,	2012
Reservoir	Usable Capacity	*** Usabl This Year	e Storage Last Year	*** Ava	======= Water	shed		Number of	=====	======= ear as % of ======= r Average
	 ========	-========	:=======	Avg :=====	====== Donne	 r und Blitzer		2	0	0 0
					Silve	r Creek (Harr	ney Co.)	2	0	0
					Silvi	es River		5	0	0
					Trout	Creek		2	0	0

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

The average is computed for the 1971-2000 base period.

- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
- (2) The value is natural volume actual volume may be affected by upstream water management.

Recession Flow Forecasts

Recession flow forecasts are presented below for key streamflow sites where reliable, daily streamflow data are available. The recession flow forecasts use exceedance probabilities in a format similar to the standard water supply forecasts presented in this document. Each forecast provides a range of possible outcomes representing the uncertainty of forecasting models.

The types of forecasts in the table below are:

- 1) Threshold flow -- Date that the daily streamflow rate falls below the given threshold flow
- 2) Peak flow -- Maximum daily flow
- 3) Date of peak flow -- Date of occurrence of maximum daily flow
- 4) Average daily flow on a given date

OWYHEE AND MALHEUR BASINS										
FORECAST POINT	FORECAST THRESHOLD	_	RECAST VAL IANCE OF EXC	-	LONG-TERM AVERAGE VALUE					
		90%	50%	10%						
Owyhee R nr Rome	2000 cfs	Ob	served on April	3 ^{ra}	May 6					
Owyhee R nr Rome	1000 cfs	Observed on April 6 th May 18								
Owyhee R nr Rome	500 cfs	Ob	served on May	3 rd	Jun 2					

UPPER JOHN DAY BASIN										
FORECAST POINT	FORECAST THRESHOLD									
		90%	90% 50% 10%							
John Day R at Service Creek	Average Daily Flow on Aug. 1st	80 140 320 271								

UPPER DESCHUTES AND CROOKED BASINS										
FORECAST POINT	FORECAST THRESHOLD	_	ORECAST VAL HANCE OF EXC	_	LONG-TERM AVERAGE VALUE					
		90%	50%	10%						
Crane Prairie Inflow	Date of Peak	Peak Lik	ely Observed o	n May 7 th	May 25					
Crane Prairie Inflow	Peak Flow	Peak Lik	cely Observed -	- 407 cfs	403					
Crane Prairie Inflow	Average Daily Flow on Oct. 1st	255	290	325	269					
Prineville Reservoir Inflow	113 cfs		served on May		June 3					
Prineville Reservoir Inflow	75 cfs	Obs	served on May	30 th	June 11					
Prineville Reservoir Inflow	50 cfs	June 04	June 12	June 19						
Whychus Creek nr Sisters	100 cfs	Aug 07	Aug 29	Sep 21	August 16					

ROGUE AND UMPQUA BASINS											
FORECAST POINT	FORECAST THRESHOLD	_	RECAST VAL IANCE OF EXC	LONG-TERM AVERAGE VALUE							
		90%	50%								
South Umpqua R nr Brockway	90 cfs	Aug 02	Aug 16	Sept 01	August 8						
South Umpqua R at Tiller	140 cfs	Jul 17	Jul 30	Aug 12	July 11						
South Umpqua R at Tiller	90 cfs	Aug 02	Aug 20	Sep 06	August 1						
South Umpqua R at Tiller	60 cfs	Aug 22 Sep 11 Oct 01 August 28									

LAKE COUNTY AND GOOSE LAKE BASINS									
FORECAST POINT	FORECAST THRESHOLD	F(Ch	LONG-TERM AVERAGE VALUE						
		90% 50% 10%							
Deep Ck ab Adel	100 cfs	Jun 01	Jun 10	Jun 23	June 17				
Honey Ck nr Plush	100 cfs	Apr 06	Apr 24	May 12	May 16				
Honey Ck nr Plush	50 cfs	Apr 20	May 12	Jun 03	June 4				
Twentymile Ck nr Adel	50 cfs	Ob	May 30						
Twentymile Ck nr Adel	10 cfs	Jun 12 Jun 19 Jul 06 July 20							

		HARNEY BA	SIN					
FORECAST POINT	FORECAST THRESHOLD		ORECAST VAL HANCE OF EXC	LONG-TERM AVERAGE VALUE				
		90%	50%	10%				
Silvies R nr Burns	400 cfs	Observed on May 5 th May 21						
	200 cfs	Obs	served on May	June 2				
	100 cfs	Ol	served on Jun	June 13				
	50 cfs	June 06	Jun 15	July 3				
Donner Und Blitzen R nr Frenchglen	200 cfs	May 28	Jun 10	Jun 23	June 20			
Donner Und Blitzen R nr Frenchglen	100 cfs	Jun 18	Jun 30	Jul 12	July 9			

Summary of SNOTEL Data

June 2012

SNOW COURSE		ELEVATION	DATE	SNOW DEPTH	WATER CONTENT	LAST YEAR	AVERAGE 71-00
Oregon							
ANEROID LAKE	SNOTEL	7400	6/01/12	41	15.9	27.8	15.5
ANNIE SPRING :	SNOTEL	6010	6/01/12	40	15.7	51.8	22.8
ARBUCKLE MTN	SNOTEL	5770	6/01/12	0	.0	8.8	.7
BEAR GRASS SNO	OTEL	4720	6/01/12	50	25.7		
BEAVER RES.	SNOTEL	5150	6/01/12	0	.0	.0	.0
BIG RED MTN	SNOTEL	6050	6/01/12	0	3.5	37.4	8.3
BIGELOW CAMP			6/01/12	0	.0	6.2	.0
BILLIE CK DVD	SNOTEL	5280	6/01/12	0	.0	8.4	.0
BLAZED ALDER	SNOTEL	3650	6/01/12	15	8.0	34.8	5.0
BLUE MTN SPGS	SNOTEL	5870	6/01/12	0	.0	.3	.0
BOURNE	SNOTEL	5850	6/01/12	0	.0	4.9	.1
BOWMAN SPRNGS	SNOTEL	4530	6/01/12	0	.0	.0	.0
CASCADE SUM.	SNOTEL	5100	6/01/12	0	.0	39.6	5.9
CHEMULT ALT	SNOTEL	4850	6/01/12	0	.0	.0	.0
CLACKAMAS LK.	SNOTEL	3400	6/01/12	0	.0	.0	.0
CLEAR LAKE	SNOTEL	3810	6/01/12	0	.0	.0	.3
COLD SPRINGS	SNOTEL	5940	6/01/12	0	.0	27.9	4.5
COUNTY LINE	SNOTEL	4830	6/01/12	0	.0	.0	.1
CRAZYMAN FLAT	SNOTEL	6180	6/01/12		.0	2.3	.0
DALY LAKE	SNOTEL	3690	6/01/12	0	.0	.6	.5
DERR	SNOTEL		6/01/12	0	.0	.0	.0
DIAMOND LAKE	SNOTEL		6/01/12	0	.0	6.5	.3
EILERTSON	SNOTEL		6/01/12	0	.0	.0	.0
EMIGRANT SPGS			6/01/12	0	.0	.0	.0
FISH CREEK	SNOTEL		6/01/12		. 0	49.4	13.8
FISH LK.	SNOTEL		6/01/12		.0	.0	.0
FOURMILE LAKE			6/01/12	0	.0	20.8	6.2
GERBER RES	SNOTEL		6/01/12		.0	.0	.0
GOLD CENTER	SNOTEL		6/01/12		. 0	. 0	. 0
GREENPOINT	SNOTEL		6/01/12	0	. 0	.0	. 0
HIGH RIDGE	SNOTEL		6/01/12		.0	18.6	1.2
HOGG PASS	SNOTEL		6/01/12	0	.0	12.2	10.8
HOLLAND MDWS	SNOTEL		6/01/12		. 0	16.1	2.1
IRISH-TAYLOR	SNOTEL		6/01/12	56	22.3	39.4	26.1
JUMP OFF JOE	SNOTEL		6/01/12	0	.0	2.7	.2
KING MTN #2	SNOTEL		6/01/12		.0	.0	.0
LAKE CK R.S.	SNOTEL		6/01/12	0	.0	.0	.0
LITTLE MEADOW			6/01/12		2.5	30.6	3.6
LUCKY STRIKE	SNOTEL		6/01/12	0	.0	.0	.0
MADISON BUTTE			6/01/12	0	.0	.0	.0
MARION FORKS	SNOTEL		6/01/12		.0	.0	.0
MCKENZIE	SNOTEL		6/01/12		21.3	51.0	19.6
MILKSHAKES	SNOTEL		6/01/12	46	22.7		
MILLER WOODS	SNOTEL		6/01/12	0	.0	.0	
MOSS SPRINGS	SNOTEL		6/01/12	0	.0	27.6	4.0
MT HOOD TEST	SNOTEL		6/01/12	102	50.4	66.5	48.1
MT HOWARD	SNOTEL		6/01/12	10	6.1	18.6	7.8
MUD RIDGE	SNOTEL		6/01/12	14	4.3	16.7	1.8
NEW CRESCENT			6/01/12	0	.0	.0	.0
NORTH FK RES			6/01/12	7	4.3	19.4	.5
OCHOCO MEADOW			6/01/12	0	.0	.0	.0
PEAVINE RIDGE			6/01/12	0	.0	.0	.3
OUARTZ MTN	SNOTEL		6/01/12	0	.0	.0	.0
R.R. OVERPASS			6/01/12	0	.0	.0	.0
RED HILL	SNOTEL		6/01/12	54	33.9	56.3	16.3
ROARING RIVER			6/01/12	0	.0	30.4	5.2
MANIN DIIVANI	OMOTEL	コシコロ	0/01/12	U	. 0	50.4	J • Z

SNOW COURSE		ELEVATION	DATE	SNOW DEPTH	WATER CONTENT	LAST YEAR	AVERAGE 71-00	
Oregon (continue	ed)							
•	SNOTEL	5290	6/01/12	0	.0	.0	.0	
SADDLE MTN	SNOTEL	3110	6/01/12	0	.0	.0		
SALT CK FALLS	SNOTEL	4220	6/01/12	0	.0	22.0	.5	
SANTIAM JCT.	SNOTEL	3740	6/01/12	0	.0	.0	.0	
SCHNEIDER MDW	SNOTEL	5400	6/01/12	0	.0	14.4	1.9	
SEINE CREEK	SNOTEL	2060	6/01/12	0	.0	.0	.0	
SEVENMILE MARS	H SNTL	5700	6/01/12	0	.1	31.2	6.5	
SILVER CREEK	SNOTEL	5740	6/01/12	0	.0	.0	.0	
SILVIES	SNOTEL	6990	6/01/12	0	.0	11.4	1.8	
SMITH RIDGE SN	OTEL	3330	6/01/12	0	.0			
SNOW MTN	SNOTEL	6220	6/01/12	0	.0	3.1	.1	
SF BULL RUN	SNOTEL	2690	6/01/12	0	.0	.0	.0	
STARR RIDGE	SNOTEL	5250	6/01/12	0	.0	.0	.0	
STRAWBERRY	SNOTEL	5770	6/01/12	0	.0	.0	.0	
SUMMER RIM	SNOTEL	7080	6/01/12	0	.0	13.0	1.2	
SUMMIT LAKE	SNOTEL	5610	6/01/12	66	30.5	53.4	26.6	
SUN PASS	SNOTEL	5400	6/01/12	0	.0	.0		
SWAN LAKE MTN	SNOTEL	6830	6/01/12	0	.0	22.3		
TAYLOR BUTTE	SNOTEL	5030	6/01/12	0	.0	.0	.0	
TAYLOR GREEN	SNOTEL	5740	6/01/12	0	.0	8.5	.1	
THREE CK MEAD	SNOTEL	5690	6/01/12	0	.0	17.2	1.9	
TIPTON	SNOTEL	5150	6/01/12	0	.0	.0	.0	
TOKETEE AIRSTR	IP SN	3240	6/01/12	0	.0	.0	.0	
WOLF CREEK	SNOTEL	5630	6/01/12	0	.0	6.6	.1	
California								
ADIN MTN SNOTE	L	6190	6/01/12	0	. 0	.0	. 7	
CEDAR PASS SNO	TEL	7030	6/01/12	0	. 0	18.0	2.7	
CROWDER FLAT S	NOTEL	5170	6/01/12	0	. 0	.0	.0	
DISMAL SWAMP S		7360	6/01/12	0	. 0	43.3	8.6	
Idaho								
	SNOTEL	5730	6/01/12	0	.0	.0	.0	
	SNOTEL		6/01/12	0	.0	5.0	.0	
Nevada	DIVOTEE	0000	0,01,12	Ŭ	• 0	0.0	• 0	
BEAR CREEK SNO	ייביו.	7800	6/01/12	0	. 0	28.9	7.1	
BIG BEND SNOTE		6700	6/01/12	0	.0	.0	.1	
BUCKSKIN, L SNO		6700	6/01/12	0	.0	.0	.0	
DISASTER PEAK		6500	6/01/12	0	.0	.0	.0	
FAWN CREEK SNO		7050	6/01/12	0	.0	11.6	1.4	
GRANITE PEAK S		7800	6/01/12	0	.0	34.7	11.9	
JACK CREEK, U		7280	6/01/12	0	.0	13.8	2.8	
LAMANCE CREEK		6000	6/01/12	0	.0	.0	.0	
LAMANCE CREEK LAUREL DRAW SN		6700	6/01/12	0	.0	.0	.0	
SEVENTYSIX CK			6/01/12	0	.0	.0	.0	
TAYLOR CANYON			6/01/12	0	.0	.0	.0	
(d) denotes discon			0/01/12	O	• 0	• 0	• 0	
(a, denotes discon	crined	51 CE.						

Basin Outlook Reports: How Forecasts Are Made Federal – State – Private Cooperative Snow Surveys

For more water supply and resource management information, contact:

USDA, Natural Resources Conservation Service Snow Survey Office 1201 NE Lloyd Suite 900 Portland, OR 97232

Phone: (503) 414-3270 Web site: http://www.or.nrcs.usda.gov/snow/index.html

Most of the annual streamflow in the western United States originates as snowfall that has accumulated in the mountains during the winter and early spring. As the snowpack accumulates, hydrologists estimate the runoff that will occur when it melts. Measurements of snow water equivalent at selected manual snow courses and automated SNOTEL sites, along with precipitation, antecedent streamflow, and indices of the El Niño / Southern Oscillation are used in computerized statistical and simulation models to prepare runoff forecasts. These forecasts are coordinated between hydrologists in the Natural Resources Conservation Service and the National Weather Service. Unless otherwise specified, all forecasts are for flows that would occur naturally without any upstream influences

Forecasts of any kind, of course, are not perfect. Streamflow forecast uncertainty arises from three primary sources: (1) uncertain knowledge of future weather conditions, (2) uncertainty in the forecasting procedure, and (3) errors in the data. The forecast, therefore, must be interpreted not as a single value but rather as a range of values with specific probabilities of occurrence. The middle of the range is expressed by the 50% exceedance probability forecast, for which there is a 50% chance that the actual flow will be above, and a 50% chance that the actual flow will be below, this value. To describe the expected range around this 50% value, four other forecasts are provided, two smaller values (90% and 70% exceedance probability) and two larger values (30%, and 10% exceedance probability). For example, there is a 90% chance that the actual flow will be more than the 90% exceedance probability forecast. The others can be interpreted similarly.

The wider the spread among these values, the more uncertain the forecast. As the season progresses, forecasts become more accurate, primarily because a greater portion of the future weather conditions become known; this is reflected by a narrowing of the range around the 50% exceedance probability forecast. Users should take this uncertainty into consideration when making operational decisions by selecting forecasts corresponding to the level of risk they are willing to assume about the amount of water to be expected. If users anticipate receiving a lesser supply of water, or if they wish to increase their chances of having an adequate supply of water for their operations, they may want to base their decisions on the 90% or 70% exceedance probability forecasts, or something in between. On the other hand, if users are concerned about receiving too much water (for example, threat of flooding), they may want to base their decisions on the 30% or 10% exceedance probability forecasts, or something in between. Regardless of the forecast value users choose for operations, they should be prepared to deal with either more or less water. Users should remember that even if the 90% exceedance probability forecast is used, there is still a 10% chance of receiving less than this amount. By using the exceedance probability information, users can easily determine the chances of receiving more or less water.

Interpreting Water Supply Forecasts

Each month, five forecasts are issued for each forecast point and each forecast period. Unless otherwise specified, all streamflow forecasts are for streamflow volumes that would occur naturally without any upstream influences. Water users need to know what the different forecasts represent if they are to use the information correctly when making operational decisions. The following is an explanation of each of the forecasts.

90 Percent Chance of Exceedance Forecast. There is a 90 percent chance that the actual streamflow volume will exceed this forecast value, and there is a 10 percent chance that the actual streamflow volume will be less than this forecast value.

70 Percent Chance of Exceedance Forecast. There is a 70 percent chance that the actual streamflow volume will exceed this forecast value, and there is a 30 percent chance that the actual streamflow volume will be less than this forecast value.

50 Percent Chance of Exceedance Forecast. There is a 50 percent chance that the actual streamflow volume will exceed this forecast value, and there is a 50 percent chance that the actual streamflow volume will be less than this forecast value. Generally, this forecast is the middle of the range of possible streamflow volumes that can be produced given current conditions.

30 Percent Chance of Exceedance Forecast. There is a 30 percent chance that the actual streamflow volume will exceed this forecast value, and there is a 70 percent chance that the actual streamflow volume will be less than this forecast value.

10 Percent Chance of Exceedance Forecast. There is a 10 percent chance that the actual streamflow volume will exceed this forecast value, and there is a 90 percent chance that the actual streamflow volume will be less than this forecast value.

*Note: There is still a 20 percent chance that actual streamflow volumes will fall either below the 90 percent exceedance forecast or above the 10 percent exceedance forecast.

These forecasts represent the uncertainty inherent in making streamflow predictions. This uncertainty may include sources such as: unknown future weather conditions, uncertainties associated with the various prediction methodologies, and the spatial coverage of the data network in a given basin.

30-Year Average. The 30-year average streamflow for each forecast period is provided for comparison. The average is based on data from 1971-2000. The % AVG. column compares the 50% chance of exceedance forecast to the 30-year average streamflow; values above 100% denote when the 50% chance of exceedance forecast would be greater than the 30-year average streamflow.

AF - Acre-feet, forecasted volume of water are typically in thousands of acrefeet.

These forecasts are given to users to help make risk-based decisions. Users can select the forecast corresponding to the level of risk they are willing to accept in order to minimize the negative impacts of having more or less water than planned for.

To Decrease the Chance of Having Less Water than Planned for: A user might determine that making decisions based on a 50 percent chance of exceedance forecast is too much risk to take (there is still a 50% chance that the user will receive less than this amount). To reduce the risk of having less water than planned for, users can base their operational decisions on one of the forecasts with a greater chance of being exceeded such as the 90 or 70 percent exceedance forecasts.

To Decrease the Chance of Having More Water than Planned for: A user might determine that making decisions based on a 50 percent chance of exceedance forecast is too much risk to take (there is still a 50% chance that the user will receive more than this amount). To reduce the risk of having more water than planned for, users can base their operational decisions on one of the forecasts with a lesser chance of being exceeded such as the 30 or 10 percent exceedance forecasts.

Using the forecasts - an Example

Using the 50 Percent Exceedance Forecast. Using the example forecasts shown below, there is a 50% chance that actual streamflow volume at the Boise River near Twin Springs will be less than 685 KAF between April 1 and July 31. There is also a 50% chance that actual streamflow volume will be greater than 685 KAF.

Using the 90 and 70 Percent Exceedance Forecasts. If an unexpected shortage of water could cause problems (such as irrigated agriculture), users might want to plan on receiving 610 KAF (from the 70 percent exceedance forecast). There is a 30% chance of receiving less than 610 KAF.

Alternatively, if users determine the risk of using the 70 percent exceedance forecast is too great, then they might plan on receiving 443 KAF (from the **90**

percent exceedance forecast). There is 10% chance of receiving less than 443 KAF.

Using the 30 or 10 Percent Exceedance Forecasts. If an unexpected excess of water could cause problems (such as operating a flood control reservoir), users might plan on receiving 760 KAF (from the 30 percent exceedance forecast). There is a 30% chance of receiving *more* than 760 KAF.

Alternatively, if users determine the risk of using the 30 percent exceedance forecast is too great, then they might plan on receiving 927 KAF (from the 10 percent exceedance forecast). There is a 10% chance of receiving more than 927 KAF.

Users could also choose a volume in between any of these values to reflect their desired risk level.

OWYHEE AND MALHEUR BASINS

Streamflow Forecasts - February 1, 2006

	Į.	<<=====	Drier ===		Future C	onditions ==	===== Wetter	====>>	
Forecast Point	Forecast	=======	=======	==	Chance Of 1	Exceeding $*$ =		=======	
	Period	90%	70%	- 1	50% (Most	Probable)	30%	10%	30-Yr Avg.
	į	(1000AF)	(1000AF)	İ	(1000AF)	(% AVG.)	(1000AF)	(1000AF)	(1000AF)
				= =					
MALHEUR near Drewsey	FEB-JUL	148	184	- 1	210	165	238	282	127
-	APR-SEP	87	110	İ	128	168	147	177	76
				1					
NF MALHEUR at Beulah	FEB-JUL	108	127	i	141	157	I 156	178	90
				i					
OWYHEE RESV INFLOW (2)	FEB-JUL	602	792	i	935	134	1090	1340	700
, ,	APR-SEP	341	473	i	575	134	687	869	430

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

USDA Natural Resources Conservation Service 1201 NE Lloyd Suite 900 Portland, OR 97232-1274

Official Business

This publication may be found online at: http://www.or.nrcs.usda.gov/snow/watersupply/

Issued by
Dave White, Chief
Natural Resources Conservation Service
U.S. Department of Agriculture

Released by
Ron Alvarado, State Conservationist
Natural Resources Conservation Service
Portland, Oregon

IMPORTANT NOTICE

WE ARE NOW OFFERING AN EMAIL SUBSCRIPTION FOR THE OREGON BASIN OUTLOOK REPORT

If you would like to receive this document in PDF format via an email announcement, please contact us to update your subscription preference.

We will send out an email each month as soon as the report is published with a link to the PDF document on our website. By choosing this paperless option, you will receive your water supply information much faster and also help us save natural resources by reducing our hardcopy printing.

If you would like to update your subscription, please contact us by phone or email:

Oregon Snow Survey staff

oregon-snow-office@or.usda.gov or 503-964-6622